
JoSIM-Pro v1.2
User Manual

Copyright © 2025 SUN Magnetics (Pty) Ltd. All Rights Reserved for:JoSIM-Pro 2025.

SUN Magnetics (RF) (Pty) Ltd15 De Beer StreetStellenbosch, 7600Republic of South Africa

www.sun-magnetics.com

Permission is granted to anyone to make or distribute verbatim copies of this document as received,in any medium, provided that the copyright notice and the permission notice are preserved, and thatthe distributor grants the recipient permission for further redistribution as permitted by this notice.

All trademarks are the property of their respective owners.

Date: March 30, 2025

www.sun-magnetics.com

Credits
JoSIM-Pro is the product of the combined research and development efforts of the JoSIM Devel-opment Team, including contributors from SUN Magnetics (Pty) Ltd, with additional support fromindustry partners and researchers.

3

CONTENTS JoSIM-Pro User Manual

Contents

Introduction 7

System Requirements 9Operating Systems . 9Hardware Requirements . 9Minimum Requirements . 9Recommended Requirements . 9Software Requirements . 10Optional Dependencies . 10Network Requirements . 10Licensing Information . 11Unsupported Systems . 11
Getting Started 12Installation . 12Windows Installation . 12Linux Installation . 13macOS Installation . 13Initial Setup . 13License Activation . 13Running Your First Simulation . 14
Features 16Core Features . 16Advanced Features . 16Parameterization of Component Values . 17Noise Addition . 17External File Inclusion . 18Parameter Spread . 18Subcircuits and Subcircuit Parameterization . 18IV Curve Generation . 19Output File Compression and Binary Format Suppor . 19Differential Methods for Simulation . 19Summary . 20
Usage 21Basic Command Structure . 21Available Options . 21

Page 4

CONTENTS JoSIM-Pro User Manual
Verbose Mode . 21Analysis Mode . 22Compressed Output . 22Help Menu . 22Input File . 23License Location . 23Silent Mode . 23Output File . 24System Identifier . 24Version Information . 24Integration Method . 25Example Usage . 25Summary . 25

Syntax 26General Structure of a Netlist . 26Components . 27Resistor . 27Inductor . 27Capacitor . 27Josephson Junction (JJ) . 27Transmission Line . 28Mutual Inductance . 29Independent Sources . 29Voltage Source . 29Current Source . 29Phase Source . 30Source Types . 30Dependent Sources . 31Current Controlled Current Source . 31Current Controlled Voltage Source . 32Voltage Controlled Current Source . 32Voltage Controlled Voltage Source . 32Control Commands . 32Transient Analysis . 32Parameter Definition . 33Subcircuits . 33Include Files . 34Noise Settings . 34Parameter Spread . 34Output Control . 34IV Curve Generation . 37File Output . 37Constants . 38Summary . 38
Examples 39Josephson Transmission Line (JTL) . 39

Page 5

CONTENTS JoSIM-Pro User Manual
RSFQ Splitter Cell . 41RSFQ AND Gate . 44

Python Module 47Module Overview . 47Settings . 47Input and Netlist . 48Input . 48Netlist . 48Model and Param . 49Model . 49Param . 49Matrix . 49Simulation and Results . 49Simulation . 49Results . 50Output . 50Example . 51API Reference . 52Module-Level Attributes . 52Class josimpro.Settings . 52Class josimpro.Input . 53Class josimpro.Netlist . 53Class josimpro.SubCircuit . 53Class josimpro.ExpandedLine . 54Class josimpro.Model . 54Class josimpro.Param . 54Class josimpro.Matrix . 55Class josimpro.Results . 55Class josimpro.Simulation . 56Class josimpro.PrintType . 56Class josimpro.Print . 56Class josimpro.Output . 57
Troubleshooting 58

Page 6

Introduction

JoSIM-Pro is an advanced circuit simulation tool developed for analyzing superconducting circuitsand Josephson junctions. Leveraging the experience and knowledge gathered from the originalJoSIM tool and other state-of-the-art software tools, JoSIM-Pro is built from the ground up to offerenhanced capabilities, improved accuracy, and increased compatibility with a range of platforms andworkflows.
JoSIM-Pro focuses on providing a fast, efficient, and highly accurate simulation experience, makingit the ideal choice for researchers and engineers working in the field of superconducting electronics.Whether you are exploring basic circuit behavior or complex superconducting systems, JoSIM-Pro’srobust set of features can help you simulate, visualize, and understand the results in a streamlinedmanner.
Unlike its predecessor, JoSIM, which was built as a compact and lightweight simulation utility, JoSIM-Pro has undergone significant redevelopment, incorporating cutting-edge algorithms and techniques.This redevelopment effort ensures that JoSIM-Pro is capable of handling larger, more complex cir-cuits while maintaining high computational performance. JoSIM-Pro has been designed to meet theneeds of both experienced researchers and new users, providing a user-friendly interface combinedwith the power of sophisticated simulation technology.
The ongoing development of JoSIM-Pro is centered around expanding its capabilities and improvingits interoperability with other tools and software commonly used in superconducting circuit design.This makes JoSIM-Pro an adaptable tool for integration into a wide range of workflows, whether foreducational purposes or for industrial research and development.
Key objectives of JoSIM-Pro include:

• Improved Performance: JoSIM-Pro incorporates numerous performance optimizations, mak-ing it one of the fastest superconducting circuit simulators available.
• Cross-Platform Support: With support for Windows, Linux, and macOS, JoSIM-Pro aims tobe accessible to all users, regardless of their preferred operating system.
• Enhanced Interoperability: The tool is designed to integrate smoothly with popular circuitdesign tools and environments, ensuring that users can seamlessly move from design to sim-ulation without disruptions.
• Ongoing Development: JoSIM-Pro is an active development effort, with continuous researchaimed at improving the capabilities, accuracy, and speed of the simulation tool.

7

CONTENTS JoSIM-Pro User Manual
With JoSIM-Pro, you are equipped with the tools necessary to push the boundaries of supercon-ducting circuit design and simulation, all while benefiting from an intuitive, efficient user experience.

Page 8

System Requirements

Before installing and using JoSIM-Pro, ensure that your system meets the following minimum andrecommended requirements for optimal performance. JoSIM-Pro is compatible with multiple oper-ating systems and is designed to leverage modern hardware for faster simulations, especially whenworking with large superconducting circuits.

Operating Systems

JoSIM-Pro is cross-platform and supports the following operating systems:
• Windows: Version 10 or later (64-bit)
• Linux: Kernel 4.15 or later (64-bit), distributions such as Ubuntu 18.04+ or CentOS 7+
• macOS: Version 10.13 (High Sierra) or later

Hardware Requirements

Minimum Requirements

The following hardware configuration is the minimum required to run JoSIM-Pro:
• Processor (CPU): Dual-core processor (Intel or AMD) with a clock speed of 2.0 GHz or higher
• Memory (RAM): 4 GB
• Storage: 500 MB of available disk space for installation
• Graphics: Basic graphics support (integrated graphics or any discrete GPU)

Recommended Requirements

For optimal performance, especially when running complex simulations, the following hardwareconfiguration is recommended:
9

CONTENTS JoSIM-Pro User Manual
• Processor (CPU): Quad-core processor (Intel Core i5/i7, AMD Ryzen 5/7) with a clock speedof 3.0 GHz or higher
• Memory (RAM): 16 GB or more, especially for large circuit simulations
• Storage: SSD with at least 1 GB of available disk space for installation and temporary files
• Graphics: Dedicated graphics card (NVIDIA, AMD) for enhanced visualizations and perfor-mance

Software Requirements

In addition to the hardware requirements, JoSIM-Pro has specific software dependencies and re-quirements:
• C++ Redistributable: On Windows systems, the Microsoft Visual C++ Redistributable 2015-2019 is required.
• Python (Optional): Python 3.x is required for executing custom scripts or integrations withthird-party simulation tools.

Optional Dependencies

JoSIM-Pro can integrate with various third-party tools for enhanced functionality. These optionaldependencies are recommended if you plan to extend JoSIM-Pro’s capabilities:
• SPICE Netlist Format: JoSIM-Pro can read and simulate SPICE-format netlists. Ensure youhave compatible circuit design tools that can export SPICE files.
• Visualization Tools: For advanced data visualization, tools such as MATLAB, Gnuplot, or Python-based plotting libraries (e.g., Matplotlib) can be used to analyze simulation results.
• LaTeX: If you need to generate technical documentation or reports directly from JoSIM-Pro,having a LaTeX distribution installed (e.g., TeX Live or MikTeX) can be helpful.

Network Requirements

JoSIM-Pro can be used offline, but certain features, such as software updates and external packageintegrations, may require an internet connection:
• Internet Access: A stable internet connection is required for checking for updates, download-ing optional packages, and accessing cloud-based resources.

Page 10

CONTENTS JoSIM-Pro User Manual
Licensing Information

JoSIM-Pro operates under a commercial license with various tiers depending on the user’s role (e.g.,academic, industry). Ensure that you have the appropriate license file for your usage. For licensinginquiries, please contact:
• Support Email: support@sun-magnetics.com
• Phone: +27 21 555 1234

Unsupported Systems

If the system of use does not meet the above minimum requirements support cannot be guaranteed.We do, however, endeavour to support all systems and will make special arrangements with clientson a case by case basis to support systems with non-standard hardware.

Page 11

Getting Started

This chapter will guide you through the process of installing, configuring, and running JoSIM-Pro forthe first time. Whether you are a seasoned professional or new to superconducting circuit simula-tion, these steps will help you get JoSIM-Pro up and running quickly and efficiently.

1. Installation

JoSIM-Pro can be installed on Windows, Linux, and macOS. Follow the appropriate instructions foryour operating system.

Windows Installation

1. Download the Installer: Visit the official SUN Magnetics website and download the latestWindows installer.
2. Run the Installer: Double-click the installer and follow the on-screen instructions. Makesure to choose an appropriate installation directory (e.g., C:\ProgramFiles\SUNMagnetics\

JoSIM-Pro).
• Ensure to select the option to add the installation directory to the PATH .

3. Install Dependencies:
• JoSIM-Pro requires the Microsoft Visual C++ Redistributable 2015-2019. If you do nothave this installed, the installer will prompt you to install it.

4. Launch JoSIM-Pro: Once installed, you can launch JoSIM-Pro by opening a command promptor Windows Terminal application and running the command josim-pro-cli . The licensing pro-cedure will need to be followed hereafter.
5. (Optional) Python interface: Included with the installation is a Python module that can beused with the with the local Python install by executing the included batch script:

path\to\install\directory\utils\install_josimpro_python.bat

12

https://sun-magnetics.com

CONTENTS JoSIM-Pro User Manual
Linux Installation

1. Download the Package: Download the appropriate package for your Linux distribution (e.g.,DEB for Ubuntu or RPM for CentOS) from the JoSIM-Pro website.
2. Install the Package:

• For Debian-based systems (e.g., Ubuntu), run the following command:
$ sudo dpkg -i josim -pro_x.x.x_amd64.deb

• For Red Hat-based systems (e.g., CentOS), use:
$ sudo rpm -i josim -pro_x.x.x_amd64.rpm

3. Launch JoSIM-Pro: After installation, JoSIM-Pro can be executed by typing josim-pro-cli inthe terminal. The licensing procedure will need to be followed hereafter.
4. (Optional) Python interface: Included with the installation is a Python module that can beused with the with the local Python install by executing the included shell script:

path/to/install/directory/utils/install_josimpro_python.sh

macOS Installation

1. Download the Disk Image: Download the .dmg file from the JoSIM-Pro website.
2. Install the Application:

• Open the .dmg file and drag JoSIM-Pro to the Applications folder.
3. Launch JoSIM-Pro: You can launch JoSIM-Pro from a terminal by typing josim-pro-cli in aterminal window. The licensing procedure will need to be followed hereafter.
4. (Optional) Python interface: Included with the installation is a Python module that can beused with the with the local Python install by executing the included shell script:

path/to/install/directory/utils/install_josimpro_python.sh

2. Initial Setup

After installation, JoSIM-Pro requires some basic configuration.

License Activation

1. Launch JoSIM-Pro: Upon first launch, a SysID.txt will be generated in the current workingdirectory.
Page 13

CONTENTS JoSIM-Pro User Manual
2. Obtain License Key: This SysID.txt needs to be mailed to support@sun-magnetics.com withthe purchase order number or invoice number as subject to obtain a jpro_license.txt .
3. License File: JoSIM-Pro requires a hardware locked license to be able to execute. Once the

jpro_license.txt has been issued it needs to be placed in the Licenses folder in the installeddirectory (e.g. for Windows, C:\ProgramFiles\SUNMagnetics\Licenses).

3. Running Your First Simulation

Once JoSIM-Pro is installed and configured, you’re ready to run your first superconducting circuitsimulation. Here’s a step-by-step guide:

Step 1: Creating a Circuit File

1. Create a Netlist: JoSIM-Pro uses SPICE-like netlists to define circuits. Create a simple textfile, example.cir , with the following contents:
1 * Simple Josephson Junction Circuit

2 B1 1 2 JJMOD

3 L1 1 0 1e-9

4 R1 2 0 1

5 V1 3 0 DC 0.001

6 .MODEL JJMOD JJ(RN=1, CAP=1e-12)

7 .TRAN 0.1ps 1ns

8 .END

This defines a simple Josephson junction circuit with a voltage source, a resistor, and an in-ductor.

Step 2: Running the Simulation

1. Open a terminal: Launch a terminal application and navigate to the circuit file.
2. Start the Simulation: Run the simulation by typing the following command into the terminalwindow: josim-pro-cli -o example.csv path/to/example.cir . JoSIM-Pro will process the netlistand simulate the circuit over the defined time interval (1ns in this case). Note: The examples are

stored in the installation directory which might not be user writeable. Rather execute the examples
from a different user writeable directory.

3. View the Progress: As the simulation progresses JoSIM-Pro will update the terminal windowwith the progress of each step in real time. Once the simulation is completed the total execu-tion time will be displayed and the results will be stored in the example.csv file.
Page 14

mailto:support@sun-magnetics.com

CONTENTS JoSIM-Pro User Manual
Step 3: Analyzing the Results

JoSIM-Pro does not officially provide a way to analyse the results yet, however, here are a few waysto do this:
• Waveform Viewer: Use the provided Python waveform viewer script to visualize voltages,currents, and junction phases. To install this script the following command needs to be run.

Note: This requires Python 3 with PyPI.
pip install path/to/install/directory/utils/waveform_viewer -0.3.8. tar.gz

The results can be viewed using the command:
waveform_viewer example.csv # Linux and macOS systems

waveform_viewer.bat example.csv # Windows systems

• Third-party Tools: External tools can be used to visualize the data in the produced CSV file.These tools include Microsoft Excel, MATLAB and GNUPlot.

4. Troubleshooting

If you encounter any issues during installation or while running JoSIM-Pro, here are a few commonsolutions:
• License Issues: Verify that the jpro_license.txt exists and is in the correct location. Addition-ally JoSIM-Pro can be directly pointed to the jpro_license.txt through the -l command-lineswitch. (e.g. josim-pro-cli -l jpro_license.txt -o example.csv example.cir).
• Simulation Errors: If the simulation does not run, check the netlist for syntax errors or missingcomponents. Refer to the Syntax Chapter in this documentation for details on valid netlistformats and elements.
• Performance Issues: If simulations are running slowly, ensure that your system meets therecommended hardware requirements and close other resource-heavy applications.

5. Next Steps

Now that you have successfully installed JoSIM-Pro and run your first simulation, you are ready toexplore more advanced features. Refer to the upcoming chapters for detailed tutorials on:
• Complex Circuit Design

• Parameterization and Other Advanced Features

• Interfacing JoSIM-Pro with Other Tools

JoSIM-Pro is continuously updated with new features and optimizations, so be sure to check forsoftware updates regularly to take advantage of the latest improvements.
Page 15

Features

JoSIM-Pro builds upon the robust foundation of the original JoSIM tool, providing a powerful, fast,and efficient simulation environment for superconducting circuits. In addition to the core functional-ity offered by JoSIM, JoSIM-Pro expands these advanced features to significantly enhance the userexperience and broaden the tool’s capabilities. These features make JoSIM-Pro an indispensabletool for both research and industrial applications.
This chapter will highlight the key features that set JoSIM-Pro apart from other simulators and ex-plain how they can be leveraged in superconducting circuit simulations.

1. Core Features

JoSIM-Pro inherits several core features from the original JoSIM, providing a solid foundation forsimulating superconducting circuits, including:

• SPICE-like Netlist: JoSIM-Pro uses a SPICE-like netlist format, making it easy for users familiarwith traditional circuit simulation tools to define their circuits.
• Josephson Junction Model: The core element of JoSIM is its ability to model Josephson junc-tions (JJ) using the RCSJ model, which allows for the accurate simulation of superconductingelectronics.
• Transient Analysis: JoSIM-Pro supports transient analysis, enabling users to simulate time-dependent phenomena in superconducting circuits.
• Export Options: JoSIM-Pro allows simulation results to be exported to CSV format for easypost-processing and analysis in third-party tools such as MATLAB, Python, or Excel.

2. Advanced Features

JoSIM-Pro includes several features that significantly enhance the simulation capabilities. Thesefeatures are designed to improve simulation performance, flexibility, and ease of use.
16

CONTENTS JoSIM-Pro User Manual
2.1 Parameterization of Component Values

One of the key features of JoSIM and JoSIM-Pro is the ability to parameterize component valuesusing the .param command. This feature allows users to define variables for component values (suchas resistances, inductances, etc.) and use these variables in their netlists. JoSIM-Pro processes theseparameters using Dijkstra’s shunting yard algorithm, ensuring efficient evaluation of mathematicalexpressions.
• Example:

.param scalar =2

.param R1=50* scalar

.param L1=10E -9*0.25* scalar

R1 1 2 R1

L1 2 0 L1

This example defines a resistor R1 with a resistance of 100Ω and an inductor L1 with aninductance of 10 nanohenry. Parameterization allows easy modification of values across largecircuits by changing just the .param definitions.

2.2 Noise Addition

JoSIM-Pro allows users to add Johnson-Nyquist noise to their simulations using the .temp and .nebcommands. Johnson-Nyquist noise, which occurs due to the thermal motion of charge carriers inresistors, is critical in accurately simulating real-world superconducting circuits.
• The .temp command specifies the temperature of the system, which influences the noise level.
• The .neb command defines the noise bandwidth, allowing fine control over the noise profilein the simulation.

.temp 4.2

.neb 10GHz

• Example:
R1 1 2 100

L1 2 0 10n

.temp 4.2

.neb 10GHz

This example defines a resistor R1 with a resistance of 100Ω and an inductor L1 with aninductance of 10 nanohenry. the temperature is set to 4.2 Kelvin, and the noise bandwidth isset to 10 GHz.
By including these commands a noise current source is automatically added in parallel to everyresistor in the circuit. This noise current then injects the effect of thermal noise from the resistorinto the network.

Page 17

CONTENTS JoSIM-Pro User Manual
2.3 External File Inclusion

JoSIM-Pro supports external file inclusion through the .include command, making it easy to mod-ularize complex designs by breaking them into smaller files. This feature allows users to maintaincleaner netlists and reuse common subcircuits or parameter definitions.
• Example:

.include common_components.cir

This command includes the contents of the common_components.cir file, which might definefrequently used components or parameters.

2.4 Parameter Spread

JoSIM-Pro supports the .spread command, which allows for the randomization of parameters withevery run of the simulation. This feature is particularly useful for exploring the impact of manufac-turing variations or environmental factors on circuit performance.
• Example:

.param R1=50

.param L1=10E-9

R1 1 2 R1

L2 2 1 L1

.spread R=0.2 0.1

This example will vary the value of R1 by ±20% and all other components by ±10% acrossmultiple runs of the simulation, simulating real-world variations.

2.5 Subcircuits and Subcircuit Parameterization

JoSIM-Pro allows users to define subcircuits, which are reusable blocks of components that canbe instantiated multiple times in a larger design. Subcircuits improve the organization of complexdesigns and facilitate reuse of common circuit elements.
In JoSIM-Pro, subcircuits can be parameterized by appending the component name and value to theend of the instantiation call. This adds flexibility to the instantiation of subcircuits.

• Example of subcircuit definition:
.subckt amp 1 2 3

R1 1 2 50

L1 2 3 10n

.ends amp

• Instantiation of the subcircuit with parameterization:
Xamp1 1 2 3 amp R1=100

This instantiation of the subcircuit amp overrides the value of R1 with 100Ω.
Page 18

CONTENTS JoSIM-Pro User Manual
2.6 IV Curve Generation

JoSIM-Pro supports IV (current-voltage) curve generation using the .iv command, which allowsusers to generate IV curves for Josephson junctions or other circuit elements. IV curves are es-sential for characterizing the behavior of superconducting circuits, particularly when working withJosephson junctions.

• Example:
.iv JJ1 300E-6 IV.csv 400

This command will generate the IV curve for the Josephson junction model JJ1 to a maximumcurrent of ±300µA. It will store the results in the file IV.csv and have a resolution of 400 stepsto reach the maximum current.

2.7 Output File Compression and Binary Format Support

JoSIM-Pro supports the compression of output files to the tar.gz format, which reduces the sizeof simulation result files. This is especially useful when working with large-scale simulations thatgenerate large datasets.
Additionally, JoSIM-Pro supports binary output formats, providing a more compact representationof the results, which can be processed faster by certain analysis tools.

2.8 Phase and Voltage Mode Simulations

JoSIM-Pro introduces the ability to perform both phase and voltage mode simulations. This dual-mode capability allows for more flexible analysis, enabling users to study both the phase dynamicsof Josephson junctions and the voltage behavior of the circuit.

2.9 Differential Methods for Simulation

JoSIM-Pro supports two differential methods for simulating circuits: the backward differential methodand the trapezoidal differential method.

• Backward Differential Method: A stable method suitable for stiff systems, ensuring conver-gence in cases where circuits have elements with widely varying time constants.
• Trapezoidal Differential Method: A method offering higher accuracy in capturing transientbehavior but can introduce numerical oscillations in certain circuits.

Users can switch between these methods depending on the requirements of their simulation, bal-ancing accuracy and stability.
Page 19

CONTENTS JoSIM-Pro User Manual
3. Summary

JoSIM-Pro extends the capabilities of the original JoSIM tool with several advanced features, in-cluding parameterization, noise modeling, subcircuit handling, and flexible output formats. Thesefeatures, combined with the tool’s ability to handle large-scale simulations efficiently, make JoSIM-Pro a powerful platform for researchers and engineers working with superconducting circuits.

Page 20

Usage

JoSIM-Pro is a terminal-based superconducting circuit simulator designed to offer a variety of op-tions for customizing simulations. This chapter provides an in-depth guide on how to use the JoSIM-Pro command-line interface and explains each available option in detail.

Basic Command Structure

The basic syntax for running JoSIM-Pro from the terminal is as follows:
josim -pro [options] input

input: This is the path to the input netlist file that defines the superconducting circuit to be simu-lated. If no input file is provided, JoSIM-Pro expects input via STDIN.
Where STDIN is the standard user provided input for the terminal application. i.e. Line-by-line inputuntil .end is typed and submitted.

Available Options

Here is a detailed explanation of each available option:

-V, --verbose

Description: Sets the verbosity level of the output. Verbose output provides insights into the sim-ulation’s internal steps, useful for debugging or detailed logging.
Usage:
josim -pro -V 2 example.cir

Values:
21

CONTENTS JoSIM-Pro User Manual
• 0 – None (no extra output) [DEFAULT]
• 1 – Minimal (basic status messages)
• 2 – Medium (detailed progress information)
• 3 – Heavy (full diagnostic information)

-a, --analysis

Description: Specifies the type of analysis to perform: either phase mode or voltage mode.
Usage:
josim -pro -a 1 example.cir

Values:
• 0 – Phase Mode (analyzes circuit in phase mode) [DEFAULT]
• 1 – Voltage Mode (analyzes circuit in voltage mode)

-c, --compressed

Description: Stores the simulation output in a compressed gzip container. This option cannot beused with binary (.bin) output.
Usage:
josim -pro -c -o example.csv example.cir

Note: This option helps reduce the size of output files, making it ideal for large simulations.

-h, --help

Description: Displays the help menu with a summary of available options.
Usage:

Page 22

CONTENTS JoSIM-Pro User Manual
josim -pro -h

Note: Use this command if you need a quick reference for the available options.

-i, --input

Description: Specifies the input file path or uses STDIN if not provided.
Usage:
josim -pro -i example.cir

Note: If input is provided via STDIN, JoSIM-Pro waits for the netlist data to be entered directly intothe terminal.

-l, --license

Description: Provides the path to the license file (license.txt). JoSIM-Pro requires a valid licensefile to execute simulations.
Usage:
josim -pro -l license.txt example.cir

-m, --minimal

Description: Disables most of the output, allowing for silent execution of the simulator. Useful whenrunning batch jobs where output is not required.
Usage:
josim -pro -m example.cir

Page 23

CONTENTS JoSIM-Pro User Manual
-o, --output

Description: Specifies the output file path. JoSIM-Pro supports multiple output formats, including:
• .csv – Standard comma-separated values for post-processing
• .dat – Data format for scientific applications
• .bin – Binary format for compact storage
• No extension – Output in raw format

Usage:
josim -pro -o output.csv example.cir

-s, --sysid

Description: Generates a system identifier required for licensing. When run, it outputs a SysID.txtfile that must be sent to SUN Magnetics to obtain a license.
Usage:
josim -pro -s

-v, --version

Description: Displays the current version information of JoSIM-Pro.
Usage:
josim -pro -v

Example Output:
JoSIM -Pro: Professional Superconductor Circuit Simulator

Copyright (C) 2024 SUN Magnetics

v1 .0.241014

Page 24

CONTENTS JoSIM-Pro User Manual
-x, --integration

Description: Specifies the integration method to use during the simulation. JoSIM-Pro supports twointegration methods:
• 0 – BDF (Backward Differentiation Formula) [DEFAULT]
• 1 – Trapezoidal

Usage:
josim -pro -x 0 example.cir

Note: The BDF method is better for stiff systems, while the Trapezoidal method offers improvedaccuracy for transient analysis but may introduce numerical oscillations in certain cases.

Example Usage

Basic Simulation Command:
josim -pro -V 1 -o results.csv example.cir

This command runs the simulation with minimal verbosity and saves the results to results.csv.
Using Multiple Options:
josim -pro -a 1 -c -o compressed_output.csv example.cir

This command performs a voltage mode analysis and saves the results in a compressed gzip file.
Specifying the License File:
josim -pro -l license.txt -o output.dat example.cir

Summary

The JoSIM-Pro command-line interface provides extensive customization options for running sim-ulations efficiently. This chapter outlined each available option in detail, including their usage andvalid parameters. By mastering these options, users can fine-tune their simulations to match specificrequirements and optimize their workflow.
Page 25

Syntax

This chapter provides an overview of the netlist syntax used in JoSIM-Pro. The syntax allows usersto define superconducting circuits with precision. It follows a SPICE-like syntax, with additionalfeatures specific to superconducting circuit elements.

1. General Structure of a Netlist

A JoSIM-Pro netlist consists of various components, models, and control commands. Below is asample netlist:
* Example Josephson Junction Circuit

B1 1 2 JJMOD area =1.2 spread =0.1 temp =4.2

L1 1 0 1e-9 spread =0.05

R1 2 0 50 spread =0.1 temp =4.2 neb =10 GHz

V1 2 0 DC 0.001

.MODEL JJMOD JJ(RN=10, CAP=1e-12)

.TRAN 0.1ps 1ns

.END

The netlist consists of:

• Components: Resistors, inductors, capacitors, and Josephson junctions.
• Models: Used to define parameters for components like Josephson junctions.
• Control Commands: Specifies how the simulation should run.

26

CONTENTS JoSIM-Pro User Manual
2. Components

2.1 Resistor

Syntax:
R<name > <node1 > <node2 > <resistance > [spread=<spread >] [temp=<temp >] [neb=<freq >]

Example:
R1 1 0 50 spread =0.1 temp =4.2 neb =10 GHz

2.2 Inductor

Syntax:
L<name > <node1 > <node2 > <inductance > [spread=<spread >]

Example:
L1 1 0 1e-9 spread =0.05

2.3 Capacitor

Syntax:
C<name > <node1 > <node2 > <capacitance > [spread=<spread >]

Example:
C1 1 0 1e-12 spread =0.03

2.4 Josephson Junction (JJ)

Syntax:
B<name > <node1 > <node2 > <model > [area=<area >] [spread=<spread >] [ic=<ic >] [temp=<

temp >] [neb=<freq >]

Page 27

CONTENTS JoSIM-Pro User Manual
Example:
B1 1 2 JJMOD area =1.2 spread =0.1 temp =4.2

.MODEL JJMOD JJ(RN=10, CAP=1e-12)

Model Parameters for Josephson Junctions

Parameter Range Default DescriptionRTYPE 0, 1 1 Linearization model usedVG or VGAP (−∞,∞) 2.8E-3 Junction gap voltageIC or ICRIT (−∞,∞) 1E-3 Junction critical currentRN (0,∞) 5 Junction normal resistanceR0 (0,∞) 30 Junction subgap resistanceC or CAP (0,∞) 2.5E-12 Junction capacitanceT (0,∞) 4.2 Junction temperature in KelvinTC (0,∞) 9.1 Critical temperature of materialDELV (0,∞) 0.1E-3 Transition voltage from subgap tonormalD [0.0, 1.0] 0.0 Transparency affecting phase rela-tionshipICFCT [0, 1] π/4 Ratio of critical current to stepheightPHI [0, 2π] 0 Phase offset (e.g., π-junction capa-bility)CPR (−∞,∞) 1 Harmonic amplitudes for phase re-lationship

2.5 Transmission Line

Syntax:
T<name > <node1+> <node1 -> <node2+> <node2 -> TD=<time_delay > Z0=<impedance >

Example:
T1 1 0 2 3 TD=1ns Z0=50

Description: A transmission line connects two sets of nodes with a specified time delay and charac-teristic impedance.

Page 28

CONTENTS JoSIM-Pro User Manual
2.6 Mutual Inductance

Syntax:
K<name > <inductor1 > <inductor2 > <coupling_factor >

Example:
K1 L1 L2 0.99

Description: The coupling factor is a value between 0 and 1, indicating how tightly two inductorsare coupled.

3. Independent Sources

3.1 Voltage Source

Syntax:
V<name > <node1 > <node2 > <source_type >

Example:
V1 1 0 DC 1.0

3.2 Current Source

Syntax:
I<name > <node1 > <node2 > <source_type >

Example:
I1 1 0 PWL(0 0 1n 1)

Page 29

CONTENTS JoSIM-Pro User Manual
3.3 Phase Source

Syntax:
P<name > <node1 > <node2 > <source_type >

Example:
.param TWO_PI =2*PI

P1 1 0 SIN(0 TWO_PI 1GHz)

3.4 Source Types

Piece-wise Linear (PWL)

Syntax:
PWL(0 0 1n 1 2n 0)

Generates a signal by linearly interpolating between the provided points.

Pulse

Syntax:
PULSE(0 1 1n 0.1n 0.1n 2n 5n)

Produces a pulse with specified rise time, fall time, and period.

Sinusoid

Syntax:
SIN(0 1 1GHz 0 0)

Creates a sinusoidal waveform with amplitude, frequency, and phase shift.

Custom Waveform

Syntax:
CUS(waveform.txt 1n 1 0)

Loads a waveform from an external text file, with time step and scale factor.
Page 30

CONTENTS JoSIM-Pro User Manual
DC

Syntax:
DC 1.0

Provides a constant DC value.

Noise

Syntax:
NOISE(1 1n 1p)

Generates noise with a specified amplitude and time step.

Exponential

Syntax:
EXP(0 1 1n 1p 2n 1p)

Produces an exponentially increasing or decreasing waveform.

Piece-wise Sinusoidal

Syntax:
PWS(0 1 1n 2n)

Generates a sinusoidal signal for each segment defined.

4. Dependent Sources

4.1 Current Controlled Current Source (CCCS)

Syntax:
F<name > <node1 > <node2 > <control_pos > <control_neg > <gain >

Creates a <gain> amplified current source that is controlled by the current between <control_pos>and <control_neg> .
Page 31

CONTENTS JoSIM-Pro User Manual

4.2 Current Controlled Voltage Source (CCVS)

Syntax:
H<name > <node1 > <node2 > <control_pos > <control_neg > <transresistance >

Creates a current source that is controlled by the voltage across <control_pos> and <control_neg>divided by the <transresistance> .

4.3 Voltage Controlled Current Source (VCCS)

Syntax:
G<name > <node1 > <node2 > <control_pos > <control_neg > <transconductance >

Creates a voltage source that is controlled by the current between <control_pos> and <control_neg>divided by the <transconductance> .

4.4 Voltage Controlled Voltage Source (VCVS)

Syntax:
E<name > <node1 > <node2 > <control_pos > <control_neg > <gain >

Creates a <gain> amplified voltage source that is controlled by the voltage across <control_pos>and <control_neg> .

4. Control Commands

4.1 Transient Analysis

Syntax:
.TRAN <time_step > <stop_time > [<print_start_time >] [<print_step >]

Page 32

CONTENTS JoSIM-Pro User Manual
Example:
.TRAN 0.01ns 10ns

4.2 Parameter Definition

Syntax:
.PARAM <name >=< mathematical_expression >

Example:
.PARAM Rval =50* cos(2*PI)

R1 1 0 Rval

4.3 Subcircuits

Syntax:
.SUBCKT <name > <io_nodes >

<elements >

.ENDS <name >

Example:
.SUBCKT amplifier 1 2 3

R1 1 2 100

L1 2 3 1e-9

.ENDS amplifier

Usage syntax:
X<name > <io_nodes > [component_name=<parameter >]

Usage example:
X1 1 2 3 amplifier R1=400

Page 33

CONTENTS JoSIM-Pro User Manual
4.4 Include Files

Syntax:
.INCLUDE "<filename >"

Example:
.INCLUDE "common_components.cir"

4.5 Noise Settings

Syntax:
.TEMP <temperature_in_K >

.NEB <bandwidth_in_Hz >

Example:
.TEMP 4.2

.NEB 1GHz

4.6 Parameter Spread

Syntax:
.SPREAD <percentage > [L=<inductor_spread >] [C=<capacitor_spread >] [R=<

resistor_spread >] [B=<junction_spread >]

Example:
.SPREAD 0.2 L=0.1 C=0.05 R=0.1 B=0.2

4.7 Output Control

Syntax:
.PRINT <type >(<device >)

.SAVE <type >(<node >)

.PLOT <type >(<node >/<device >)

Page 34

CONTENTS JoSIM-Pro User Manual
Example:
.PRINT V(1) I(R1)

.SAVE P(B1)

.PLOT NODEP B1

.PRINT , .PLOT and .SAVE perform the exact same function and can be used interchangeably.

Output Types

The following output types can be used within the .PRINT, .SAVE or .PLOT commands:

• NODEV: Nodal voltage between a specified node and ground, or between two nodes.
• NODEP: Nodal phase between a node and ground, or between two nodes.
• DEVV: Device voltage across a specific element, such as a resistor or Josephson junction.
• DEVI: Device current through an element.
• DEVP: Device phase associated with a particular element.
• V(): Voltage at a node (or between two nodes).
• I(): Current through a device.
• P(): Phase of a node or element.

Example:
.PRINT V(1) I(R1) P(J1)

.PRINT NODEV (1) NODEP(2, 3)

.SAVE DEVV(R1) DEVI(L1) DEVP(J1)

These commands allow users to monitor and analyze specific quantities in their circuit simulations,providing detailed insight into the behavior of both nodes and devices.

Subcircuit Output Referencing

Referencing the nodes or devices within a subcircuit requires unrolling the hierarchy of the subcircuitinstantiations to the top level. In JoSIM-Pro, subcircuits can be nested within each other, meaningthat devices or nodes within a deeply nested subcircuit must be referenced using their completehierarchical path.
Syntax for Subcircuit Referencing:
<device >.<subckt1 >.<subckt2 >.<subcktN >

Page 35

CONTENTS JoSIM-Pro User Manual
Here, <device> refers to the component inside the innermost subcircuit, and each <subckt> repre-sents the subcircuit in which the device or node resides, moving outward to the top-level netlist.
Example:
R1.X1.X2.X3

In this example:
• R1 is a resistor inside the subcircuit X1 .
• X1 is instantiated inside another subcircuit X2 .
• X2 is instantiated within the subcircuit X3 .
• X3 is part of the top-level netlist.

To output the voltage across R1 , you would use the following command:
.PRINT V(R1.X1.X2.X3)

Explanation: When JoSIM-Pro unrolls the subcircuits during simulation, it treats each nested sub-circuit as a hierarchical block. In order to refer to a specific device or node within such a hierarchy,you must fully specify the path from the innermost device to the top level. This ensures that thesimulator correctly identifies the element within the nested structure.
More Examples: If you want to print the phase of a Josephson junction B1 inside a deeply nestedsubcircuit, you would reference it like this:
.PRINT P(B1.X1.X2)

To save the current through an inductor L2 inside the subcircuit X4 :
.SAVE I(L2.X4)

Why This is Important: Proper subcircuit referencing ensures that the simulator can correctly locatethe elements, especially when dealing with large and complex designs. Nested subcircuits allowmodular design, but without clear referencing, it would be impossible to track specific elementswithin the hierarchy during the simulation. JoSIM-Pro’s ability to handle these references also makesit easier to debug and analyze simulations that involve reused or replicated components.
Expanded Nested Example:
.SUBCKT inner 1 2

R1 1 2 50

.ENDS inner

.SUBCKT middle 3 4

X1 3 4 inner

L1 3 4 1e-9

.ENDS middle

.SUBCKT outer 5 6

Page 36

CONTENTS JoSIM-Pro User Manual
X2 5 6 middle

V1 5 0 DC 1

.ENDS outer

X3 1 2 outer

.TRAN 0.01ns 1ns

.END

In this example:
• R1 is located inside the inner subcircuit.
• The inner subcircuit is instantiated as X1 within the middle subcircuit.
• The middle subcircuit is instantiated as X2 within the outer subcircuit.
• Finally, outer is instantiated as X3 in the top-level netlist.

To print the voltage across R1 , the correct reference would be:
.PRINT V(R1.X1.X2.X3)

This ensures that JoSIM-Pro traces through the entire hierarchy to correctly locate R1 .

4.8 IV Curve Generation

Syntax:
.IV <modelname > <max_current > <filepath > [<current_steps >]

Example:
.IV JJMOD 0.01 example_iv.csv 200

This command generates a current vs voltage plot for the model(<modelname>) to ±current(<max_current>)in number of steps(<current_steps>) and stores the results in <filepath> .

4.9 File Output

Syntax:
.FILE <filepath >

Example:
Page 37

CONTENTS JoSIM-Pro User Manual
.FILE results1.csv

.PRINT V(1) I(R1)

.FILE results2.csv

.PRINT P(J1)

The .FILE command allows for multiple output files. Each output command following a .FILE linestores results in the specified file.

5. Constants

Constant Symbol ValuePI π 3.141592653589793PHI ZERO Φ0 2.067833831170082E-15BOLTZMANN kB 1.38064852E-23EV e 1.6021766208E-19HBAR h̄ 1.0545718001391127E-34C c 299792458MU0 µ0 12.566370614E-7EPS0 ϵ0 8.854187817E-12RFQ Φ0
2π 3.291059757E-16

6. Summary

This chapter provided a detailed explanation of the JoSIM-Pro netlist syntax, including componentdefinitions, dependent sources, model parameters, and built-in constants.

Page 38

Examples

This chapter presents advanced examples of circuits that can be simulated using JoSIM-Pro. Thefocus is on practical superconducting circuits using Josephson junctions, including Josephson Trans-mission Lines (JTLs), Destructive Flip-Flops (DFFs), and more advanced logic circuits based on RSFQ(Rapid Single Flux Quantum) technology.

1. Josephson Transmission Line (JTL)

* Josephson Transmission Line (JTL)

.SUBCKT jjbranch IN

.PARAM RSHUNT =5

BJJ IN 1 JJMOD IC=200u

RJJ IN 2 RSHUNT

LRJJ 2 1 0.1p

LJJP 1 0 0.1p

.MODEL JJMOD JJ(RN=15, CAP =0.1p)

.ENDS

.SUBCKT ibias OUT

.PARAM IBIAS =300u

IBIAS 0 1 DC IBIAS

LBIAS 1 OUT 3E-13

.ENDS

.SUBCKT jtl IN OUT

.PARAM LSTORE =2.0p

L1 IN 1 LSTORE

X1 1 jjbranch

L2 1 2 LSTORE

X2 2 ibias

L3 2 3 LSTORE

X3 3 jjbranch

L4 3 OUT LSTORE

.ENDS

VIN 1 0 PULSE(0 830u 50p 2.5p 2.5ps 0 50ps)

XJTL 1 2 jtl

ROUT 2 0 2

.TRAN 0.25ps 250ps

.PLOT V(VIN) P(BJJ.X1.XJTL) P(BJJ.X3.XJTL) V(ROUT)

.END

39

CONTENTS JoSIM-Pro User Manual
Description: The Josephson Transmission Line (JTL) is a key building block in superconducting cir-cuits, allowing the efficient propagation of flux quanta. This example demonstrates a more advancedJTL design with shunt resistors, inductors, bias currents, and multiple Josephson junctions.
Explanation: This advanced JTL design is composed of the following key elements:

• Josephson Branch (jjbranch):
– A Josephson junction (BJJ) modeled by JJMOD .
– A shunt resistor (RJJ) to maintain stability.
– Two inductors, LRJJ and LJJP , forming part of the branch.

• Bias Current Subcircuit (ibias):
– Provides a steady bias current to the circuit using an ideal current source and an inductor.

• JTL Subcircuit (jtl):
– Multiple jjbranch and ibias subcircuits are connected with inductors (L1 , L2 , L3 , L4)to propagate flux quanta through the line.

• Top-Level Netlist:
– A pulse source (VIN) drives the input.
– The output voltage is monitored across the resistor ROUT .

Key Simulation Insights:

• The .TRAN command defines a transient simulation with a step size of 0.25ps and a totalduration of 250ps .
• The .PLOT command outputs:
• The input voltage at VIN .
• The phase across the Josephson junctions BJJ in the first and third branches of the JTL.
• The output voltage across the load resistor ROUT .

Why This Example is Useful:

• This example illustrates the construction of a superconducting transmission line using multipleJosephson junctions and bias currents.
• It demonstrates how to organize complex circuits into hierarchical subcircuits.
• It shows how to reference devices within nested subcircuits using full paths such as BJJ.X1.XJTL .

Page 40

CONTENTS JoSIM-Pro User Manual

Figure 1: JTL Example output traces visualized using included script

2. RSFQ Splitter Cell

* RSFQ Splitter Cell

.SUBCKT jjbranch IN

.PARAM Rshunt =5

BJJ IN 1 JJMOD IC=200u

RJJ IN 2 Rshunt

LRJJ 2 1 0.1p

LJJP 1 0 0.1p

.MODEL JJMOD JJ(RN=15, CAP =0.1p)

.ENDS

.SUBCKT ibias OUT

.PARAM IBias =300u

IBias 0 1 DC Ibias

LBias 1 OUT 3E-13

.ENDS

.SUBCKT splitter a Q0 Q1

LA a 6 0.3E-12

XJJ1 6 jjbranch BJJ =100u

XBIAS1 6 ibias IBIAS =125u

L1 6 7 1.5E-12

XJJ2 7 jjbranch BJJ =175u

L2 7 18 3E-12

Page 41

CONTENTS JoSIM-Pro User Manual
XBIAS2 18 ibias IBIAS =350u

L3 18 19 0.5E-12

L4 4 19 1.3E-12

XJJ3 4 jjbranch BJJ =125u

XBIAS3 5 ibias IBIAS =75u

L5 4 5 1.3E-12

XJJ4 5 jjbranch BJJ =175u

LQ0 5 q0 2.2E-12

L6 19 8 1.3E-12

XJJ5 8 jjbranch BJJ =125u

XBIAS4 9 ibias IBIAS =75u

L7 8 9 1.3E-12

XJJ6 9 jjbranch BJJ =175u

LQ1 9 q1 2.2E-12

.ENDS

VIN a 0 PULSE(0 830u 50p 2.5p 2.5ps 0 50ps)

Xsplit a Q0 Q1 splitter

R1 Q0 0 2

R2 Q1 0 2

.TRAN 0.25ps 250ps

.PLOT V(VIN) V(R1) V(R2)

.END

Description: This example demonstrates a splitter cell based on RSFQ technology, which splits theinput signal into two outputs. The circuit uses the same Josephson Junction branch (jjbranch) and
bias current subcircuit (ibias) in multiple parts of the design, allowing for efficient parameterizationand reusability.
Explanation: This RSFQ splitter design is composed of the following key elements:

• Josephson Branch (jjbranch):
– A Josephson junction (BJJ) modeled by JJMOD .
– A shunt resistor (RJJ) for stability.
– Two inductors, LRJJ and LJJP , forming the Josephson branch.

• Bias Current Subcircuit (ibias):
– Provides steady bias current to the circuit using an ideal current source and an inductor.

• Splitter Subcircuit (splitter):
– This subcircuit uses multiple instances of jjbranch and ibias subcircuits to build a split-ter that routes the input signal a into two outputs Q0 and Q1 .
– The inductors LA , L1 , L2 , L3 , and LQ0 , LQ1 form the core of the splitting operation.

• Top-Level Netlist:
– A pulse source (VIN) drives the input.
– The output voltages are monitored across resistors R1 and R2 .

Page 42

CONTENTS JoSIM-Pro User Manual
Key Simulation Insights:

• The .TRAN command defines a transient simulation with a step size of 0.25ps and a totalduration of 250ps .
• The .PLOT command outputs:

– The input voltage at VIN .
– The output voltage at R1 and R2 , corresponding to Q0 and Q1 .

Why This Example is Useful:

• This example illustrates how to efficiently reuse subcircuits by parameterizing them (e.g., mod-ifying Josephson junction critical current BJJ and bias current IBIAS for different instances).
• It demonstrates how to organize complex circuits into hierarchical subcircuits, simplifying thedesign.
• It shows how to split a signal in RSFQ logic, a fundamental operation in superconducting digitalcircuits.

Figure 2: Splitter Circuit output traces visualized using included script

Page 43

CONTENTS JoSIM-Pro User Manual
3. RSFQ AND Gate

* RSFQ AND Cell

.include base_cells.cir

.subckt and a b clk q

LA a 1 2p

XJJ1 1 jjbranch

XBIAS1 1 ibias IBIAS =175u

L1 1 2 3p

B1 2 4 JJMOD IC=180u

RB1 2 3 4

LRB1 3 4 2.2p

XJJ2 4 jjbranch IC=250u

XBIAS2 4 ibias IBIAS =175u

L2 4 5 10p

XJJ3 5 jjbranch IC=250u

B2 5 7 JJMOD IC=180u

RB2 5 6 4

LRB2 6 7 2.2p

L3 7 8 1p

L4 5 9 3p

B3 9 11 JJMOD IC=180u

RB3 9 10 4

LRB3 10 11 2.2p

LB b 12 2p

XBIAS3 12 ibias IBIAS =175u

XJJ4 12 jjbranch IC=250u

L5 12 13 3p

B4 13 15 JJMOD IC=180u

RB4 13 14 4

LRB4 14 15 2.2p

XJJ5 15 jjbranch IC=250u

XBIAS4 15 ibias IBIAS =175u

L6 15 16 10p

B5 16 18 JJMOD IC=180u

RB5 16 17 4

LRB5 17 18 2.2p

L7 18 8 1p

XJJ6 16 jjbranch IC=250u

L8 16 19 3p

B6 19 11 JJMOD IC=180u

RB6 19 20 4

LRB6 20 11 2.2p

LCLK clk 21 2p

XJJ7 21 jjbranch IC=250u

XBIAS5 21 ibias IBIAS =175u

L9 21 22 3p

XJJ8 22 jjbranch IC=250u

XBIAS7 22 ibias IBIAS =175u

L10 22 8 1p

L11 11 23 1p

XJJ9 23 jjbranch IC=250u

XBIAS6 23 ibias IBIAS =175u

LQ 23 q 2p

.ends

VCLK clk 0 PULSE (0 830u 50p 2.5p 2.5ps 0 50ps)

Page 44

CONTENTS JoSIM-Pro User Manual
VA a 0 PWL(0 0 80p 0 82.5p 830u 85p 0 180p 0 182.5p 830u 185p 0)

VB b 0 PWL(0 0 130p 0 132.5p 830u 135p 0 180p 0 182.5p 830u 185p 0)

XAND a b clk q and

RQ q 0 2

.TRAN 0.25ps 250ps

.PLOT V(VA) V(VB) V(VCLK) V(RQ)

.END

Description: This example demonstrates a basic RSFQ AND gate. The AND logic is achieved byusing Josephson junctions and bias currents to combine two inputs. The design showcases thereuse of subcircuits like jjbranch and ibias from the included base file (base_cells.cir).
Explanation: This RSFQ AND gate design includes the following key elements:

• Josephson Branch (jjbranch):
– A Josephson junction modeled by JJMOD .
– A shunt resistor and inductors forming the Josephson branch.

• Bias Current Subcircuit (ibias):
– Provides a steady bias current using an ideal current source.

• AND Gate Subcircuit (and):
– This subcircuit combines the two inputs, a and b , and processes them through Joseph-son junctions and bias currents to output a logic AND at node q .
– The inputs are routed through the inductors (L1 , L2 , LA , etc.) and the Josephson junc-tion branches.

Key Simulation Insights:

• The .TRAN command defines a transient simulation with a step size of 0.25ps and a totalduration of 250ps .
• The .PLOT command outputs:

– The input voltages at VA and VB .
– The clock signal at VCLK .
– The output signal at RQ .

Why This Example is Useful:

• This example demonstrates the construction of a rudimentary RSFQ AND gate.
• It showcases the reuse of subcircuits and the inclusion of external files using the .includecommand.

Page 45

CONTENTS JoSIM-Pro User Manual
• It provides a basic example of how logic gates are implemented in RSFQ technology, demon-strating the potential for building more complex logic circuits.

Figure 3: RSFQ AND Gate output traces visualized using included script

Page 46

Python Module

Version: josimpro.VERSION (see below for how to display version)
JoSIM Pro is a simulation engine for circuit simulations. This Python API provides object-orientedaccess to the core functionality of JoSIM Pro. You can configure simulation settings, read and parsecircuit netlists, build the simulation matrix, run simulations, and access the results. The module alsoexposes licensing settings so you can inspect (and in some cases adjust) global parameters.

1. Module Overview

When you import the module:
import josimpro

You gain access to the following classes and members:
• Settings: Global static settings that control simulation parameters and license location.
• Input: Represents input from a netlist file or string.
• Netlist, SubCircuit: Data structures representing the parsed netlist.
• Model and Param: Classes for specifying device models and parameters.
• Matrix: Represents the circuit matrix (built from an Input) and stores component data.
• Simulation: Runs the circuit simulation on a given Matrix.
• Results: Contains raw simulation results (with helper methods to return NumPy arrays).
• Print, Output: Handle output formatting and printing of simulation results.

2. Settings

The global settings are stored in the josimpro.Settings class. These are static variables that controlvarious aspects of the simulation and license location. Some values are meant to be read-only, whileothers can be adjusted by the user.
47

CONTENTS JoSIM-Pro User Manual
For example:
import josimpro

View the current global temperature

print("Global Temperature:", josimpro.Settings.globalTemp)

Adjust some user -configurable settings:

josimpro.Settings.minOutput = True

josimpro.Settings.verbose = 2

The license location should be set before simulation if different from default:

josimpro.Settings.license = "/path/to/my/license.txt"

Display license validity (formatted as a human -readable date):

print("License Validity:", josimpro.Settings.validity)

3. Input and Netlist

3.1 Input

The Input class is used to load and parse a netlist. You can create an Input object by either using adefault constructor or by passing a file name. Example:
Create an Input object from a netlist file.

inp = josimpro.Input("path/to/my_netlist.cir")

Or specify the lines individually

inp = josimpro.Input()

inp.fileLines = ["L01 0 1 2H", "R01 1 2 2", "C01 2 0 2"]

inp.read_input () # Reads the netlist lines

inp.parse_input () # Parses the input and builds the Netlist

The parsed netlist is stored in the netlist member, which is an instance of the Netlist class.

3.2 Netlist

Holds the raw lines from the netlist file and various parsed data:
net = inp.netlist

print(net.fileLines) # All lines of the netlist

The module automatically converts STL containers (like lists and dictionaries) to their Python equiv-alents.
Page 48

CONTENTS JoSIM-Pro User Manual
4. Model and Param

4.1 Model

The Model class represents a circuit model with various parameters (e.g. gap voltage, critical current).For example:
model = josimpro.Model()

model.modname = "MyModel"

model.vg = 0.003

print("Model type:", model.type)

4.2 Param

A Param object represents a parameter with an expression, a value, and a flag indicating whether ithas been parsed.
param = josimpro.Param("Vth", 0.7, True)

print("Parameter:", param.exp , param.value , param.parsed)

5. Matrix

The Matrix class represents the simulation matrix built from the input netlist. It is a key object thatencapsulates the parsed netlist, component data, and other simulation-related parameters.
Create a Matrix object using an Input object:
mat = josimpro.Matrix(inp)

You can also access public members for inspection:
print("Matrix parameters:", mat.params)

print("Number of components:", len(mat.components))

Note: The components property is exposed as a read-only list of component pointers.

6. Simulation and Results

6.1 Simulation

The Simulation class runs the simulation on a given Matrix. It stores solution vectors and simulationprogress.
Example:

Page 49

CONTENTS JoSIM-Pro User Manual
sim = josimpro.Simulation(mat)

sim.simulate(mat)

print("Simulation OK:", sim.isSimOK)

6.2 Results

The simulation results are stored in sim.results . To convert raw pointer data into Python-friendlyNumPy arrays, helper methods are provided.
For example, to get the time vector as a NumPy array:
time_arr = sim.results.get_time ()

print("Time steps:", time_arr.shape)

To get the entire simulation data as a 2D NumPy array (the helper requires the Matrix object todetermine the number of variable rows):
x_full = sim.results.get_x_full(mat)

print("Simulation data shape:", x_full.shape)

Under the hood, get_x_full() infers the number of variables (either from the matrix’s relevant vec-tor or its total number of columns) and constructs a NumPy array of shape (num_vars , number_of_time_steps).

7. Output

The Output class formats and prints the simulation results. It uses a list of Print objects to storedifferent output commands.
Example usage:
Create an Output object using the Input and Matrix.

out = josimpro.Output(inp , mat)

Format the output results (pass the simulation results and simulation size)

out.format_output(sim.results , mat , sim.simSize)

Print output (for example , to the console)

out.print_output(sim , mat)

Additional functions allow you to export results in various formats:
• print_CSV_DAT(del, fname, printIndex=0)

• print_BIN(fname, printIndex=0)

• print_RAW(fname, printIndex=0)

• print_COUT(printIndex=0)

The plist (list of Print objects) and the output time vector are available as attributes if you needto further process or inspect the printed results.
Page 50

CONTENTS JoSIM-Pro User Manual
8. Example

Putting this all together in an example:
This imports the library and gives it a shortened name

import josimpro as jp

Import some libraries to show results

import matplotlib.pyplot as plt

Create an input object from a circuit netlist

inp = jp.Input("JTL_Example.cir")

Create a matrix from the parsed input

mat = jp.Matrix(inp)

Create an output object to inform the matrix object what it needs to store

out = jp.Output(inp , mat)

Create a simulation object using the matrix object

sim = jp.Simulation(mat)

Perform the simulation

sim.simulate(mat)

Extract the time axis from the results

time = sim.results.get_time ()

Extract the relevant results using the matrix object

y = sim.results.get_x_full(mat)

Create some plots with a common time axis

fig , axes = plt.subplots(y.shape [0], 1, sharex=True)

Plot each of the extracted results

for i, ax in enumerate(axes):

ax.plot(time , y[i])

Which produces the resulting plot:

Figure 4: JTL Example simulated and plotted using JoSIM Pro Python interface
Page 51

CONTENTS JoSIM-Pro User Manual
9. API Reference

This section provides an overview of the main classes and functions in the JoSIM Pro Python API.The API is exposed via the josimpro module.

Module-Level Attributes

josimpro.VERSION

Type: str
Description: The version string of the JoSIM Pro simulation engine.

Class josimpro.Settings

Global static settings used throughout the simulation engine.
Static Methods:

• resetToDefault() — Resets all settings to their default values.
Static Attributes: (Unless noted as read-only, these are user-configurable)

• globalTemp (double) — Global temperature.
• globalNeb (double) — Global Neb value.
• globalSpread, globalRSpread, globalCSpread, globalLSpread, globalBSpread—Various spread parameters.
• minOutput (bool) — Minimal output flag.
• analysisType (int) — Analysis type (e.g., phase or voltage).
• verbose (int) — Verbosity level.
• integrationMethod (int) — Integration method (BDF or TRAP).
• tStep (double) — Simulation time step.
• tStop (double) — Simulation stop time.
• pStep (double) — Print step value.
• pStart (double) — Print start value.
• delayedStart (bool) — Flag for delayed start.
• compressedOutput (bool) — Flag indicating whether output is compressed.
• licensee (str, read-only) — The licensed user.
• validity (str, read-only) — License validity as a human-readable date.
• endUse (int, read-only) — License end use flag.
• license (str) — License file path.

Page 52

CONTENTS JoSIM-Pro User Manual
Class josimpro.Input

Represents the simulation input.
Constructors:

• Input() — Default constructor.
• Input(filename: str) — Constructs an Input object from a file.

Methods:

• read input() — Reads input from a file or STDIN. Auto-called in file based constructor.
• parse input() — Parses the input lines. Auto-called in file based constructor.

Properties:

• inputFile (str) — The file path (or STDIN) from which input is read.
• netlist (josimpro.Netlist) — The parsed netlist data.

Class josimpro.Netlist

Holds the parsed netlist data.
Attributes:

• fileLines (list[str]) — All lines from the input file.
• subcircuits (dict[str, SubCircuit]) — Mapping of subcircuit names to their data.
• controls (list[int]) — Indices of control lines.
• maincircuit (list[int]) — Indices of main circuit lines.
• prints (list[int]) — Indices of print commands.
• parameters, models, variables (list[tuple[int, str]]) — Indices of parameter,model, and variable definitions.
• includedFiles (list[Path]) — Files included via .include commands.

Class josimpro.SubCircuit

Represents a subcircuit in the netlist.
Attributes:

• lines (list[int]) — Line indices.
• io (list[str]) — I/O tokens.
• parameters (list[str]) — Parameter definitions.

Page 53

CONTENTS JoSIM-Pro User Manual
Class josimpro.ExpandedLine

Represents an expanded netlist line.
Attributes:

• tokens (list[str]) — Tokens extracted from the line.
• subc (str) — Subcircuit label.

Class josimpro.Model

Represents a circuit model.
Constructors:

• Model() — Default constructor.
Attributes:

• type (josimpro.ModelType) — Model type.
• modname (str) — Model name.
• vg (float) — Voltage gap.
• ic (float) — Critical current.
• cpr (list[float]) — Capacitance parameters.
• fitParams (list[float]) — Fit parameters.
• rtype (int) — Resistance type.
• rn, r0, c, t, tc, deltaV, d, icFct, phiOff (float) — Various model parame-ters.
• tDep (bool) — Temperature dependence flag.
• del, del0 (float) — Additional parameters.

Class josimpro.Param

Represents a simulation parameter.
Constructors:

• Param(exp: str = "", value: float = 0.0, parsed: bool = False)

Attributes:

Page 54

CONTENTS JoSIM-Pro User Manual
• exp (str) — The parameter expression.
• value (float) — The numerical value.
• parsed (bool) — Flag indicating if the parameter has been parsed.

Class josimpro.Matrix

Represents the simulation matrix built from the input netlist.
Constructors:

• Matrix() — Default constructor.
• Matrix(input: josimpro.Input) — Constructs a matrix from an Input object.

Methods:

• parse components(lines, netlist, subc="", suffix="", io map={}, top io=[],

kwargs={}) — Parses components from the netlist.
• handle components() — Processes components.
• create compressed row storage() — Generates a compressed row storage represen-tation.

Attributes:

• params — Simulation parameters.
• models — Model definitions.
• components — Read-only list of component pointers.
• non zeros — Non-zero elements.
• rp — Row pointer vector.
• column indices — Column indices.

Class josimpro.Results

Contains raw simulation results.
Attributes:

• size (int) — Number of time steps.
• time — Raw pointer to the time array (use get time()).
• x — Raw pointer to simulation data (use get x full(matrix)).

Helper Methods:

• get time() — Returns the time array as a NumPy array.
• get x full(matrix) — Returns the entire 2D simulation data as a NumPy array.

Page 55

CONTENTS JoSIM-Pro User Manual
Class josimpro.Simulation

Runs the simulation.
Constructors:

• Simulation() — Default constructor.
• Simulation(matrix: josimpro.Matrix) — Constructs a Simulation from a Matrix.

Methods:

• simulate(matrix: josimpro.Matrix) — Executes the simulation using the providedMatrix.
Attributes:

• x — The solution vector.
• b — The right-hand side vector.
• isSimOK — Simulation status flag.
• simSize — Simulation size (number of time steps).
• simProgress — Simulation progress.
• results — A Results object containing simulation data.

Enum josimpro.PrintType

Specifies print command types.
Values:

• Voltage — Voltage print.
• Phase — Phase print.
• Current — Current print.
• Unknown — Unknown print type.

Class josimpro.Print

Represents a print command.
Constructors:

• Print() — Default constructor.
Page 56

CONTENTS JoSIM-Pro User Manual
Attributes:

• name (str) — The print command name.
• type (josimpro.PrintType) — The type of print.
• idx (list[int]) — Index vector.
• values (list[float]) — Output values.
• time (list[float]) — Time values.
• printIndex (int) — Print index.

Operators:

• eq () — Checks equality between two Print objects.

Class josimpro.Output

Handles output formatting and printing.
Constructors:

• Output() — Default constructor.
• Output(input: josimpro.Input, matrix: josimpro.Matrix)— Constructs an Out-put object.

Methods:

• format output(results: josimpro.Results, matrix: josimpro.Matrix, resultSize:

int) — Formats the simulation results.
• print output(simulation: josimpro.Simulation, matrix: josimpro.Matrix)—Prints the output.
• print CSV DAT(del: str, fname: str, printIndex: int = 0)— Exports outputin CSV/DAT format.
• print BIN(fname: str, printIndex: int = 0) — Exports output in binary format.
• print RAW(fname: str, printIndex: int = 0) — Exports output in RAW format.
• print COUT(printIndex: int = 0) — Prints output to the console.

Attributes:

• plist (list[josimpro.Print]) — List of print commands.
• time (list[float]) — Output time vector.

Page 57

Troubleshooting

In this chapter, we will go over common errors and warnings generated by JoSIM-Pro, their possiblecauses, and recommended solutions. These messages are meant to assist you in resolving issuesduring simulation setup, input handling, and execution.

1. Utility Functions

• Error: String (value) cannot be converted to double.

Cause: JoSIM-Pro is trying to convert a string to a numerical value but has failed. This couldhappen if a string that is expected to be a number contains non-numeric characters.
Solution: Double-check the input value that is supposed to be numeric and ensure it is for-matted correctly (e.g., avoid characters in numeric fields). If this seems like an internal issue,contact support.

• Error: Cannot calculate mean of an empty vector.

Cause: A function is trying to calculate the mean of an empty set of values.
Solution: Ensure that you are passing a valid set of values to functions that require numericinput.

• Error: No values to calculate the mean from the given start index.

Cause: The function is attempting to calculate a mean, but there are no values beyond thespecified starting index.
Solution: Make sure the index is valid and that values exist after the starting point.

2. Command-line Arguments

• Error: Unknown switch: switch name

Cause: The command-line switch provided is unrecognized by JoSIM-Pro.
Solution: Refer to the documentation to check the correct syntax and available command-linearguments.

• Error: Input file and output file names are the same. Operation canceled to prevent

data loss.

Cause: The input and output files have been given the same name.
Solution: Ensure that the output file has a different name to avoid overwriting the input file.

58

CONTENTS JoSIM-Pro User Manual
3. Components

• Error: Unknown parameter param found in component label.

Cause: A component includes an unrecognized parameter.
Solution: Check the component syntax and verify that all parameters are correctly defined inthe netlist.

• Error: Duplicate component key.name detected.

Cause: More than one component with the same label or name has been defined.
Solution: Ensure that component labels are unique throughout the netlist to avoid conflicts.

• Error: Missing model for label.

Cause: The component has not been assigned a model.
Solution: Define the required model and ensure it is referenced correctly.

• Error: Invalid transmission line definition found for label.

Cause: The syntax or parameters of a transmission line definition are incorrect.
Solution: Check the transmission line syntax and parameters, ensuring they are properly de-fined.

• Warning: No area or Ic scalar specified for label. Using unity scalar.

Cause: No scaling factor (area or critical current) has been defined for the Josephson Junction.JoSIM-Pro will use a default scalar of 1.
Solution: Specify a scalar or leave it if the default is acceptable.

4. Functions

• Error: Unsupported function type: function name

Cause: JoSIM-Pro has encountered a function type that it doesn’t support.
Solution: Ensure that the function you are trying to use is supported and correctly defined.

• Error: Unexpected number of tokens. Expected pairs of (time, amplitude).

Cause: The input to a time-varying function is incorrectly formatted.
Solution: Ensure that pairs of time and amplitude values are correctly provided for the func-tion.

• Error: Timestep and amplitude mismatch. Please ensure the correct syntax is followed.

Cause: The number of timesteps does not match the number of amplitude values provided.
Solution: Ensure that each time value has a corresponding amplitude value.

• Error: Too few values to form pulse function.

Cause: The pulse function has an insufficient number of values.
Solution: Check the pulse function definition and ensure it includes all required parameters.

• Error: Too few values to form sin function.

Cause: The sine function has an insufficient number of values.
Solution: Verify that the sine function is correctly defined with the proper values.

Page 59

CONTENTS JoSIM-Pro User Manual
• Error: Too few values to form custom function.

Cause: The custom waveform function has too few values.
Solution: Ensure that all necessary values are provided in the custom function.

• Error: The file filepath could not be found.

Cause: JoSIM-Pro is unable to locate the file specified.
Solution: Ensure the file path is correct, the file exists, and you have permission to access it.

• Error: Too few values to form noise function.

Cause: The noise function has an insufficient number of values.
Solution: Ensure the noise function is defined with the correct values.

• Error: Too few values to form exponential function.

Cause: The exponential function has an insufficient number of values.
Solution: Verify the exponential function definition.

5. Input

• Error: The file inputFile could not be found.

Cause: JoSIM-Pro cannot find the input file specified.
Solution: Double-check the file path and ensure the input file is available and accessible.

• Error: Invalid .include statement: line.

Cause: The .include command has incorrect syntax.
Solution: Verify the syntax of the .include statement, ensuring the file path is correct andaccessible.

• Error: Invalid subcircuit line: line.

Cause: The subcircuit definition is invalid or has incorrect syntax.
Solution: Ensure that subcircuits are properly defined, following correct syntax.

• Error: Missing end of subcircuit subc.

Cause: A subcircuit is not properly closed with an .ends statement.
Solution: Ensure that all subcircuits are correctly closed with the appropriate .ends command.

• Warning: Cyclic file include. The file filepath has already been included. The

included file will be ignored.

Cause: A file has been included recursively, which can lead to errors.
Solution: Remove any cyclic references by ensuring a file is not included more than once.

6. Matrix

• Error: Attempting to set simulation step size larger than simulation stop time.

Cause: The step size provided is greater than the total simulation time.
Solution: Ensure that the simulation step size is smaller than the stop time.

Page 60

CONTENTS JoSIM-Pro User Manual
• Error: Attempting to start storing output values beyond the stop time of the simulation.

Cause: JoSIM-Pro is trying to store values after the simulation end time.
Solution: Adjust the time frame of your output requests.

• Error: Invalid parameter definition found: parameter.
Cause: A parameter is defined incorrectly.
Solution: Check the syntax for defining parameters and ensure it adheres to the rules.

• Error: Unparseable parameters found.

Cause: Parameters contain invalid characters or values.
Solution: Ensure that all parameters are valid and parsable.

• Error: Invalid spread command defined.

Cause: The spread command is missing values or defined incorrectly.
Solution: Check the spread command syntax.

• Error: Unknown subcircuit specified.

Cause: A subcircuit is referenced that does not exist.
Solution: Ensure all subcircuits are defined within the netlist scope.

• Error: Insufficient nodes specified for subcircuit.

Cause: The subcircuit call does not have enough nodes specified for its inputs and outputs.
Solution: Check the subcircuit definition and provide the correct number of nodes.

• Error: Cyclic subcircuit found.

Cause: A subcircuit is calling itself, creating a loop.
Solution: Avoid cyclic subcircuit calls as they cause infinite loops in simulation.

• Error: Invalid mutual inductance line specified.

Cause: Mutual inductance is defined incorrectly.
Solution: Ensure correct syntax is followed for mutual inductance.

• Error: Unable to locate inductors in mutual inductance.

Cause: One or both inductors involved in mutual inductance are missing.
Solution: Ensure all inductors are defined in the netlist.

7. Model

• Error: Invalid model line: Missing parameters.

Cause: The model line is missing essential parameters.
Solution: Check the model syntax and add the required parameters.

• Error: Unknown model type.

Cause: The specified model type is unsupported by JoSIM-Pro.
Solution: Ensure you are using a valid model type.

• Error: Unknown model parameter.

Cause: The model has an unrecognized parameter.
Solution: Verify the parameter in the model definition.

Page 61

CONTENTS JoSIM-Pro User Manual
8. Parameters

• Error: Mismatched parentheses in expression.

Cause: The parentheses in the parameter expression are unbalanced.
Solution: Ensure proper syntax for parentheses in expressions.

• Error: Invalid RPN deduced from expression.

Cause: The reverse polish notation (RPN) derived from the expression is invalid.
Solution: This may be a bug. Contact support.

• Warning: Parameter already defined. Overwriting.

Cause: A parameter is being redefined.
Solution: Check if the parameter needs to be defined multiple times.

9. Simulation

• Error: Simulation failed. Matrix has no solution.

Cause: The matrix equation derived from the circuit has no solution.
Solution: Contact support, as this is most likely a bug.

10. Licensing

• Error: No license detected.

Cause: The license file is missing or invalid.
Solution: Contact support@sun-magnetics.com for assistance.

• Error: Invalid license detected.

Cause: The license file cannot be validated.
Solution: Contact support to resolve the licensing issue.

11. Output

• Warning: The component requested for output does not exist.

Cause: The requested output component is not present in the circuit.
Solution: Verify that the output request references valid circuit components.

Page 62

mailto:support@sun-magnetics.com

	Introduction
	System Requirements
	Operating Systems
	Hardware Requirements
	Minimum Requirements
	Recommended Requirements

	Software Requirements

	Optional Dependencies
	Network Requirements
	Licensing Information
	Unsupported Systems
	Getting Started
	Installation
	Windows Installation
	Linux Installation
	macOS Installation
	Initial Setup
	License Activation

	Running Your First Simulation

	Features
	Core Features
	Advanced Features
	Parameterization of Component Values
	Noise Addition
	External File Inclusion
	Parameter Spread
	Subcircuits and Subcircuit Parameterization
	IV Curve Generation
	Output File Compression and Binary Format Suppor
	Differential Methods for Simulation

	Summary
	Usage
	Basic Command Structure
	Available Options
	Verbose Mode
	Analysis Mode
	Compressed Output
	Help Menu
	Input File
	License Location
	Silent Mode
	Output File
	System Identifier
	Version Information
	Integration Method

	Example Usage
	Summary

	Syntax
	General Structure of a Netlist
	Components
	Resistor
	Inductor
	Capacitor
	Josephson Junction (JJ)
	Transmission Line
	Mutual Inductance

	Independent Sources
	Voltage Source
	Current Source
	Phase Source
	Source Types

	Dependent Sources
	Current Controlled Current Source
	Current Controlled Voltage Source
	Voltage Controlled Current Source
	Voltage Controlled Voltage Source

	Control Commands
	Transient Analysis
	Parameter Definition
	Subcircuits
	Include Files
	Noise Settings
	Parameter Spread
	Output Control
	IV Curve Generation
	File Output

	Constants
	Summary

	Examples
	Josephson Transmission Line (JTL)
	RSFQ Splitter Cell
	RSFQ AND Gate

	Python Module
	Module Overview
	Settings
	Input and Netlist
	Input
	Netlist

	Model and Param
	Model
	Param

	Matrix
	Simulation and Results
	Simulation
	Results

	Output
	Example
	API Reference
	Module-Level Attributes
	Class josimpro.Settings
	Class josimpro.Input
	Class josimpro.Netlist
	Class josimpro.SubCircuit
	Class josimpro.ExpandedLine
	Class josimpro.Model
	Class josimpro.Param
	Class josimpro.Matrix
	Class josimpro.Results
	Class josimpro.Simulation
	Class josimpro.PrintType
	Class josimpro.Print
	Class josimpro.Output

	Troubleshooting

